

# **Quartz Glass for Optics**

Quartz glass has outstanding optical properties such as light transmission and has characteristics such as high purity, high resistance to heat and radiation.

Shin-Etsu Quartz manufacture and sell the "SUPRASIL-P Series" of ultra-high purity and excellent homogenous synthetic quartz glass, and "SUPRASIL-F300", an OH free synthetic quartz glass for optics.

We also offer "INFRASIL", a natural quartz glass for optics manufactured by Heraeus.



## Types of quartz glass for optics

#### "SUPRASIL-P Series" synthetic quartz glass

Shin-Etsu Quartz has access to advanced technologies to produce synthetic quartz glass for optics by collaborating with Heraeus and Shin-Etsu Group. Thus, we can create outstanding optical quartz glass such as "SUPRASIL-P Series".

This includes a lineup of products that can be used for a wide range of applications including all generations of microlithography equipment, from i-line systems used in semiconductor manufacturing processes up to cutting-edge ArF, and exposure equipment for FPD and printed circuit board processes.

Seven different grades are offered based on characteristics such as striae grade, transmission, and laser durabilities.

#### "SUPRASIL-F300" OH free synthetic quartz glass

SUPRASIL-F300 for optics is based on SUPRASIL-F300, which has superior near-infrared permeability that is needed in optical fiber applications, and has been given adjustments for optical properties using the unique manufacturing technologies of our group.

#### "INFRASIL, HOQ310" natural quartz glass

These products are quartz glass for optics that were made by Heraeus using natural crystal as a raw material.

| Туре                    | Grade            | Characteristics                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|-------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                         | SUPRASIL-P248C   | This is high-end quartz glass for optics that has excellent transmission at a wide range of wavelengths.<br>It is striae-free in all directions so is optimal for high-precision optics applications.                                                                               |  |  |  |  |  |
|                         | SUPRASIL-P700    | The homogeneity is even more excellent than that of SUPRASIL-P248C, and the ArF excimer laser durabilities have been improved.                                                                                                                                                      |  |  |  |  |  |
|                         | SUPRASIL-P710C   | This has excellent transmission from visible through near infrared, and is compatible with large products of $\phi$ 600 or above. It is offered as striae-free in three directions or in one direction.                                                                             |  |  |  |  |  |
| Synthetic quartz        | SUPRASIL-P20     | This is striae-free in one direction, and is optimal for general optical elements,<br>such as windows and lenses materials.                                                                                                                                                         |  |  |  |  |  |
| glass                   | SUPRASIL-P310C   | This has more homogeneous than SUPRASIL-P20, and possesses transmission and laser durabilities equivalent to those of SUP-P248C.                                                                                                                                                    |  |  |  |  |  |
|                         | SUPRASIL-P210    | The optical characteristics correspond to those of SUPRASIL-P310C, and the ArF excimer laser durabilities have been improved.                                                                                                                                                       |  |  |  |  |  |
|                         | SUPRASIL-P30     | This is optimal for general optical elements regarding which high transmission is required.                                                                                                                                                                                         |  |  |  |  |  |
|                         | SUPRASIL-F300    | This has both infrared permeability on par with optical fiber<br>and the high homogeneity of quartz glass for optics.                                                                                                                                                               |  |  |  |  |  |
| Natural quartz<br>glass | INFRASIL 301/302 | This is quartz glass for optics for visible through near infrared that has been manufactured from carefully selected crystal and contains a low amount of OH base. It is possible to choose striae-free in three directions or in one direction in accordance with the application. |  |  |  |  |  |
|                         | H0Q310           | This is quartz glass for optics manufactured with electrical melting using crystal as a raw material.<br>It is outstanding with regard to economy, and is optimal for window applications with<br>high replacement frequencies.                                                     |  |  |  |  |  |

#### ■List of grades

#### Shapes and sizes

Our quartz glass for optics comes in a variety of shapes, including blocks, plates, prisms, lenses, and rods.

For detailed information regarding the sizes and shapes that can be manufactured, please contact the relevant sales department.





## List of the properties of quartz glass for optics

| Tuno                      | Crada          | Striae Striae | Striae      | iae Size<br>sity* <sup>1</sup> (mm) | Homogeneity(⊿n)*2                          |                                            | Residual Strain*3 | Bubble              | <b>-</b> 1 <b>*</b> 5 | Excimer laser             |
|---------------------------|----------------|---------------|-------------|-------------------------------------|--------------------------------------------|--------------------------------------------|-------------------|---------------------|-----------------------|---------------------------|
| туре                      | Grade          | grade*1       | intensity*1 |                                     | Nominal                                    | On request                                 | (nm/cm)           | grade* <sup>4</sup> | Fluorescence***       | tolerance                 |
|                           | SUPRASIL-P248C | 3D            | A           | < 200<br>< 300                      | 2×10 <sup>−6</sup><br>3×10 <sup>−6</sup>   | 1×10 <sup>−6</sup><br>2×10 <sup>−6</sup>   | 2<br>3            | 0                   | Free                  | KrF (248nm)*6             |
|                           | SUPRASIL-P700  | 3D            | A           | < 200<br>< 300                      | 1×10 <sup>-6</sup><br>2×10 <sup>-6</sup>   | 0.5×10 <sup>-6</sup><br>1×10 <sup>-6</sup> | 2<br>2            | 0                   | Free                  | ArF (193nm)*7             |
|                           | SUPRASIL-P710C | 3D<br>1D      | A<br>A      | < 600<br>< 750                      | 5×10 <sup>-6</sup><br>8×10 <sup>-6</sup>   | Negotiable                                 | 8<br>10           | 0                   | Free                  | _                         |
| Synthetic quartz<br>glass | SUPRASIL-P20   | 1D            | A           | < 150<br>< 400                      | 20×10 <sup>-6</sup><br>20×10 <sup>-6</sup> |                                            | 8<br>10           | 0                   | Free                  | KrF (248nm)* <sup>6</sup> |
|                           | SUPRASIL-P310C | 1D            | A           | < 150<br>< 400                      | 2×10 <sup>−6</sup><br>5×10 <sup>−6</sup>   | 1×10 <sup>−6</sup><br>2×10 <sup>−6</sup>   | 2<br>5            | 0                   | Free                  | KrF (248nm)* <sup>6</sup> |
|                           | SUPRASIL-P210  | 1D            | А           | < 150<br>< 300                      | 2×10 <sup>−6</sup><br>3×10 <sup>−6</sup>   | 1×10 <sup>–6</sup><br>2×10 <sup>–6</sup>   | 2<br>3            | 0                   | Free                  | ArF (193nm)*7             |
|                           | SUPRASIL-P30   | _             | B-C         | _                                   |                                            |                                            | _                 | 0                   | Free                  | _                         |
|                           | SUPRASIL-F300  | 3D            | A           | < 200<br>< 300                      | 4×10 <sup>−6</sup><br>6×10 <sup>−6</sup>   | 2×10 <sup>−6</sup><br>4×10 <sup>−6</sup>   | 8<br>10           | 0                   | Light blue            | _                         |
|                           |                | 1D            | A           | < 150<br>< 400                      | 5×10 <sup>−6</sup><br>10×10 <sup>−6</sup>  | 2×10 <sup>−6</sup><br>4×10 <sup>−6</sup>   | 8<br>10           | 0                   |                       | _                         |
| Natural quartz<br>glass   | INFRASIL 301   | 3D            | A           | _                                   | 5×10 <sup>-6</sup>                         | _                                          | 5                 | 0                   | Blue-violet           | _                         |
|                           | INFRASIL 302   | 1D            | А           | —                                   | 6×10 <sup>-6</sup>                         | —                                          | 5                 | 0~1                 | Blue-violet           | _                         |
|                           | H0Q310         | _             | _           | _                                   | _                                          | _                                          | 10                | 2~3                 | Blue-violet           | _                         |

\*1 "3D" means striae-free in three directions. "1D" means striae-free in one direction.

This is according to the United States military standard MIL-G-174. The evaluation is made via the main surface.

\*2 This value is valid for 90% of the outer diameter. In the periphery, the actual value may exceed this stated value.

\*3 For large-sized products, this value may be slightly higher in the edge zone, which is the outer 20% of the diameter.

\*4 Conforms to DIN 58927.

\*5 Excitation wavelength is 253.7 nm. For quartz glass, there is almost never excitation at a wavelength of 290 nm or above.

\*6 The transmission loss is less than 0.1%/cm (less than 0.2%/cm for P20) after 1.8×10<sup>7</sup> pulses of KrF excimer laser ( $\lambda$ =248nm,100mJ/cm<sup>2</sup>/pulse) irradiation.

\*7 The transmission loss is less than 1%/cm after  $6 \times 10^6$  pulses of ArF excimer laser ( $\lambda$ =193nm, 20mJ/ cm<sup>2</sup>/pulse) irradiation.

\* For detailed information regarding the sizes and properties that can be manufactured, please contact us.

\* We can make custom-designed products for specific applications.



(The values are not specification values.)



## Initial transmission of quartz glass for optics including reflection loss at surface

## Refractive index of quartz glass for optics

| Wavelength (nm) | SUPRASIL-P | Wavelength (nm) | SUPRASIL-P |
|-----------------|------------|-----------------|------------|
| 184.9           | 1.57518    | 632.8           | 1.45714    |
| 193.4           | 1.56036    | 656.3           | 1.45649    |
| 206.2           | 1.54281    | 706.5           | 1.45526    |
| 214.4           | 1.53386    | 780.0           | 1.45379    |
| 228.8           | 1.52129    | 852.1           | 1.45259    |
| 248.3           | 1.50852    | 1014.0          | 1.45036    |
| 253.7           | 1.50565    | 1128.6          | 1.44899    |
| 289.4           | 1.49112    | 1529.6          | 1.44440    |
| 334.1           | 1.47989    | 1813.1          | 1.44084    |
| 365.0           | 1.47466    | 1970.1          | 1.43867    |
| 404.7           | 1.46974    | 2058.1          | 1.43737    |
| 435.8           | 1.46681    | 2325.4          | 1.43309    |
| 486.1           | 1.46324    | vd              | 67.9±0.2   |
| 587.6           | 1.45858    |                 |            |

\* This is the value at 25°C and 1,013h Pa.

\* The refractive index measurement error is ±3×10-5.

\* The refractive index of SUPRASIL-F300 is about 2×10<sup>-4</sup> higher than the above value.

\* For detailed values, please contact us.

- The optimal product varies depending on the method/purpose of use, including light source (CW light, laser), illuminance, irradiation conditions, and optical path length.
- We can offer the best material for each application from our range of products.
- We can also accommodate custom designed products in accordance with preferences regarding homogeneity and size.



## Properties of quartz glass for optics

| Relative temperature coefficients of the refractive index in $10^{-6}$ K <sup>-1</sup> |           |            |           |            |  |  |  |
|----------------------------------------------------------------------------------------|-----------|------------|-----------|------------|--|--|--|
| Wavelength                                                                             | SUPR      | ASIL-P     | INFR      | ASIL       |  |  |  |
| nm                                                                                     | 0 to 20°C | 20 to 40°C | 0 to 20°C | 20 to 40°C |  |  |  |
| 237.8                                                                                  | 14.6      | 14.9       | 15.2      | 15.3       |  |  |  |
| 365.0                                                                                  | 11.0      | 11.2       | 11.5      | 11.6       |  |  |  |
| 546.1                                                                                  | 9.9       | 10.1       | 10.6      | 10.7       |  |  |  |
| 587.6                                                                                  | 9.8       | 10.0       | 10.5      | 10.6       |  |  |  |
| 643.8                                                                                  | 9.6       | 9.8        | 10.4      | 10.5       |  |  |  |

Measurement accuracy:  $\pm 0.5 \times 10^{-6}$ 

| Abbe constant                     |          |          |  |  |  |  |
|-----------------------------------|----------|----------|--|--|--|--|
| $V_d = \frac{n_d - 1}{n_F - n_C}$ | 67.9±0.2 | 67.8±0.5 |  |  |  |  |

| Birefringence constant @ 633 nm |           |           |  |  |  |  |
|---------------------------------|-----------|-----------|--|--|--|--|
| nm/cm<br>kg/cm <sup>2</sup>     | 3.47±0.05 | 3.61±0.05 |  |  |  |  |

| Metal impurities |            | Unit: ppm |
|------------------|------------|-----------|
| Elements         | SUPRASIL-P | INFRASIL  |
| AI               | < 0.005    | 20        |
| Ca               | < 0.005    | 1         |
| Cr               | < 0.001    | 0.1       |
| Cu               | < 0.001    | 0.1       |
| Fe               | < 0.001    | 0.8       |
| K                | < 0.001    | 0.8       |
| Li               | < 0.01     | 1         |
| Mg               | < 0.001    | 0.1       |
| Na               | < 0.04     | 1         |
| Ti               | < 0.005    | 1         |
| OH               | 1-1000*    | < 8       |

\* The OH content of SUPRASIL-F300 is to below 1 ppm.

| Mechanical properties          |       | Value at 20°C      |
|--------------------------------|-------|--------------------|
| Density                        | g/cm³ | 2.20               |
| Longitudinal elastic modulus   | MPa   | 7.0×104            |
| Torsional rigidity             | MPa   | 3.0×104            |
| Poisson's ratio                |       | 0.17               |
| Compressive strength           | MPa   | 1150               |
| Tensile strength               | MPa   | 67                 |
| Bending strength               | MPa   | 50                 |
| Torsional strength             | MPa   | 30                 |
| Mohs-hardness                  |       | 5.5 to 6.5         |
| Micro-hardness                 | MPa   | 8600 to 9800       |
| Knoop-hardness (load of 100 g) | MPa   | 5800 to 6100       |
| Internal damping               |       | 1×10 <sup>-5</sup> |
| Sound wave (longitudinal wave) | m/s   | 5720               |

The analysis values on this list are not standard values (guaranteed values)

Product inquiries Ship ELSU QUARTZ A JOINT VENTURE WITH HERAEUS

## Shin-Etsu Quartz Products Co., Ltd.

#### **Sales Department**

East Tower 9F, Gate City Ohsaki, 1-11-2 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan TEL : +81-3-6737-0225 FAX : +81-3-5759-6101

| Thermal properties       |               |                       |          |        |  |
|--------------------------|---------------|-----------------------|----------|--------|--|
|                          | SUPRAS        | SIL-P                 | INFRASII | _      |  |
| Strain temperature °C    | 100           | 0                     | 1075     |        |  |
| Annealing temperature °C | 110           | 0                     | 1180     |        |  |
| Softening temperature °C | 160           | 0                     | 1730     |        |  |
| Operating temperature l  | imit          |                       |          |        |  |
| Continuous °C            | 950           | )                     | 1150     |        |  |
| Short term °C            | 120           | 0                     | 1300     |        |  |
| Mean specific heat       |               |                       |          | J/kg⋅K |  |
| 0 to 100°0               | )             |                       | 772      |        |  |
| 0 to 500°0               | )             |                       | 964      |        |  |
| 0 to 900°0               | )             |                       | 1052     |        |  |
| Heat conductivity        |               |                       |          | W/m⋅K  |  |
| 20°C                     |               | 1.38                  |          |        |  |
| 100°C                    |               | 1.47                  |          |        |  |
| 200°C                    |               | 1.55                  |          |        |  |
| 300°C                    |               | 1.67                  |          |        |  |
| 400°C                    |               |                       | 1.84     |        |  |
| 950°C                    |               |                       | 2.68     |        |  |
| Mean thermal expansion   | n coefficient |                       |          | K-1    |  |
| -50 to 0°0               |               | 0.27×10-6             |          |        |  |
| 0 to 100°0               |               | 0.51×10-6             |          |        |  |
| 0 to 200°0               |               | 0.58×10-6             |          |        |  |
| 0 to 300°0               |               | 0.59×10 <sup>-6</sup> |          |        |  |
| 0 to 600°0               |               | 0.54×10 <sup>-6</sup> |          |        |  |
| 0 to 900°0               |               | 0.48×10 <sup>-6</sup> |          |        |  |

| Electrical properties                                                                                                                                                                                                    |                      |          |                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|----------------------|--|--|--|
| Resistivity $\Omega \cdot m$                                                                                                                                                                                             | SUPRASIL-P           |          | INFRASIL             |  |  |  |
| 20°C                                                                                                                                                                                                                     | 1.0×10 <sup>18</sup> |          | 1.0×10 <sup>16</sup> |  |  |  |
| 400°C                                                                                                                                                                                                                    | 1.0×1                | 06       | 1.0×10 <sup>8</sup>  |  |  |  |
| 800°C                                                                                                                                                                                                                    | 6.3×1                | 04       | 6.3×10 <sup>4</sup>  |  |  |  |
| 1200°C                                                                                                                                                                                                                   | 1.3×1                | 03       | 1.3×10 <sup>3</sup>  |  |  |  |
| Dielectric loss angle $tan\delta$                                                                                                                                                                                        |                      |          |                      |  |  |  |
| 1 kHz                                                                                                                                                                                                                    |                      | 5.0×10-4 |                      |  |  |  |
| 1 MHz                                                                                                                                                                                                                    |                      | 1.0×10-4 |                      |  |  |  |
| 3×1010 Hz                                                                                                                                                                                                                |                      |          | 4.0×10-4             |  |  |  |
| tan $\delta$ at 1 MHz is nearly constant up to 200°C, and it becomes gradually higher above 200°C. tan $\delta$ at 10 <sup>10</sup> Hz becomes gradually lower up to 350°C, and it becomes gradually higher above 350°C. |                      |          |                      |  |  |  |
| Dielectric constant $\varepsilon$                                                                                                                                                                                        |                      |          |                      |  |  |  |
| 20°C、0 to 1×1                                                                                                                                                                                                            | 06 Hz                |          | 3.70                 |  |  |  |
| 23°C、9×108 Hz                                                                                                                                                                                                            |                      |          | 3.77                 |  |  |  |
| 23°C、3×101                                                                                                                                                                                                               | <sup>D</sup> Hz      |          | 3.81                 |  |  |  |
| Dielectric strength (kV/mm) In the case of a thickness of 5 mm or above                                                                                                                                                  |                      |          |                      |  |  |  |

20°C

500°C

### https://www.sqp.co.jp/e/

25 to 40

4 to 5